Organische Synthesen mit Übergangsmetall-Komplexen, 50¹⁾

2H-Pyrrol-Komplexe durch stufenweise Insertion von Alkinen und Isocyaniden in M = C-Bindungen von Chrom- und Wolfram-Carbenkomplexen

Rudolf Aumann* und Peter Hinterding

Organisch-Chemisches Institut der Universität Münster, Orléans-Ring 23, D-4400 Münster

Eingegangen am 31. Mai 1990

Key Words: Carbene complexes of chromium and tungsten / 1-Metalla-1,3-dienes / Insertion of alkynes and isocyanides into M=C bonds / 2H-Pyrrole complexes of chromium and tungsten / [1+2+2] Cycloaddition reactions of carbene complexes, alkynes and isocyanides

Organic Syntheses via Transition Metal Complexes, 50^{1} . – 2H-Pyrrole Complexes by a Stepwise Insertion of Alkynes and Isocyanides into M = C Bonds of Carbene Chromium or Tungsten Complexes

2H-Pyrrole complexes **6a**, **b** are obtained in two steps by [1+2+2] cycloaddition reactions of the carbene complex $(CO)_5W = C(OEt)C_6H_5$ (1d), the alkyne $EtO - C \equiv CH$ (2) and isocyanides $R^1 - NC$ **4a**, **b** ($R^1 = CH_3$, $c \cdot C_6H_{11}$). $L_nM = C(OEt)R$ **1** [$L_nM = Cr(CO)_{5}$, $W(CO)_{5}$; $R = C_6H_5$, CH_3] reacts with **2** to give 1-metalla-1,3-dienes **3a** - **d**. (E)/(Z)-**3d** and **4** yield **6a**, **b**

Übergangsmetall-Carbenkomplexe werden häufig als Reagenzien für organische Synthesen eingesetzt, da die funktionellen Gruppen M = C sich leicht und sehr vielfältig modifizieren lassen²⁾. Eingehend studiert wurden Additionsreaktionen von Alkinen³⁾ an Cr = C-Bindungen zum Aufbau von Carbocyclen sowie Additionsreaktionen von Iminen^{4a)} und Isocyaniden⁵⁾ an M = C-Bindungen (M = Cr, Mo, W, Mn, Fe) zur Darstellung von N-Heterocyclen⁴⁾. Neben Zwei-Komponenten- sind grundsätzlich auch Drei-Komponenten-Reaktionen mit diesen Verbindungen möglich. Letztere wurden bisher nur selten beachtet, obwohl zahlreiche prinzipiell interessante Kombinationsmöglichkeiten bestehen. Schema 1 zeigt einige Beispiele für Drei-Komponenten-Reaktionen von Carbenkomplexen mit Alkinen und Isocyaniden zu vier- und fünfgliedrigen N-Heterocyclen A-F, deren Bausteine und Verknüpfungsmuster jeweils gekennzeichnet sind. Demnach reagieren endständige Alkine wie Vinyliden-Einheiten. Sie liefern mit Carben-Chrom- oder Carben-Wolframkomplexen einkernige Azetidinyliden-Komplexe⁶⁾ A und B (deren Alkin-Bausteine endo- bzw. exocyclisch integriert wurden), mit (elektronenreichen) Carben-Mangankomplexen^{5,7} hingegen zweikernige **P**yrrol-Derivate C. α-CH-acide Isocyanide und Inamin ergeben Dihydroazet-Komplexe D⁸⁾. Pyrrol-Derivate E⁹⁾ lassen sich durch Cyclisierung von Alkenylcarben-Komplexen mit Isocyaniden erhalten. Pyrrol-Derivate vom Typ F waren bisher nicht bekannt. E und F sind strukturell zwar verwandt, sie weisen jedoch topologisch verschiedene Verknüpfungsmuster auf, da in E der ursprüngliche und der neu gebildete Carbenkohlenstoff benachbart, in F jedoch durch zwei Kohlenstoffatome getrennt sind. Die stufenweise Verknüpfung von

via 1-aza-1,2,4-pentatriene complexes 5, which are open-chain precursors of 6. 2*H*-Pyrrole complexes 11 and 14 are synthesized in overall [2+1+2] cycloadditions with reversed connectivity, or formation of 1-chroma-1,3-dienes 10 and 13 by condensation of the methylcarbene complex 1a with acid amides, and cyclisation again with isocyanides 4.

Carbenkomplexen mit Alkinen und Isocyaniden zu Pyrrol-Derivaten vom Typ F ist Gegenstand vorliegender Untersuchung.

Schema 1. Bisher bekannte Verknüpfungsmuster A-F von vierund fünfgliedrigen N-Heterocyclen aus Drei-Komponenten-Reaktionen von Carbenkomplexen $[L_nM = Cr(CO)_5, W(CO)_5, Mn(CO)_2(MeC_5H_4); \bigcirc = ursprüng$ liches Carbenkohlenstoffatom] mit Alkinen und Isocyaniden

Wir berichten hier über Reaktionssequenzen, bei denen ein Alkin 2 und ein Isocyanid 4 stufenweise nacheinander in M = C-Bindungen von 1 eingebaut und über 1-Aza-1,2,4pentatrien-Zwischenstufen 5 letztlich in [1+2+2]-Cycloadditionen die Pyrrol-Derivate 6 [Gl. (1) bis (3)] gewonnen wurden. Weiterhin haben wir aus 1 nach anderem Bauprinzip über 1-Metalla-1,3-diene (E)-10 und (E)-13 durch

[2+1+2]-Cycloadditionen die Pyrrolkomplexe 11 [Gl. (5) und (6)] bzw. *spiro*-14 [Gl. (7) und (8)] hergestellt.

1-Metalla-1,3-diene 3 aus Carbenkomplexen 1 und einem Alkin 2

Ethoxycarben-Komplexe 1 addieren elektronenreiche Alkine, wie z.B. Ethoxyethin $(2)^{10}$ zu 1-Metalla-1,3-dienen 3 [Gl. (1), Tab. 1]. Diese bilden (E)/(Z)-Gemische, in denen der Anteil an Isomeren (E)-3 überwiegt (Tab. 1).

1-Ethoxycarben-Komplexe vom Typ 3 sind wesentlich reaktiver als die strukturgleich gebauten 1-Aminocarben-Komplexe, die man z.B. durch Umsetzung von 1 mit 1-Aminoalkinen [analog zu Gl. (1)]^{4c)} gewinnt. Anders als bei den 1-Amino-Derivaten ist zur Darstellung von 3 nach Gl. (1) ein zwei- bis vierfacher Überschuß an 2 erforderlich, da 2 teilweise durch Metall-induzierte Polymerisation verbraucht wird. Methylcarben-Komplexe 1 a, 1 b liefern Insertionsprodukte 3 mit ausschließlich (E)-Konfiguration (Tab. 1). Aus Phenylcarben-Komplexen 1 c, d hingegen erhält man Gemische von (E)- und (Z)-Isomeren, die jedoch nicht konfigurationsstabil sind und sich in Lösung rasch ineinander umwandeln (s.u.).

Konfiguration von (E)/(Z)-3

Anhand von NOE-Messungen wurden die Konfigurationen von (E)/(Z)-3 zugeordnet. Bei (E)-3a, b bewirkt die Bestrahlung von 2-H bei 20°C jeweils eine deutliche Intensitätszunahme der Signale von 3-OCH₂ (um 12 bzw. 14%). Im Gegensatz zu den 3-Methyl-Derivaten 3a, 3b beobachtet man bei den 3-Phenyl-Derivaten 3c, 3d eine auf der NMR-Zeitskala rasche (E)/(Z)-Isomerisierung an der C=C-Bindung. Bei 3d wurde dies durch Spin-Sättigungs-Übertragung zwischen den Protonen der 1-OCH₂-Gruppen von (E)und (Z)-Isomeren nachgewiesen. Ab 70°C, 300 MHz ist zudem eine dynamische Linienverbreiterung der Resonanzsignale dieser Protonen erkennbar. Daß diese nicht durch rasche *s-cis/trans*-Isomerisierung hervorgerufen wird, folgern wir aus der relativen Lage der Resonanzsignale von C-3 von (*E*)- und (*Z*)-**3d** im Vergleich mit chemischen Verschiebungen ähnlich gebauter Verbindungen¹¹. Aufgrund des γ -Effekts (Zwischen L_nM und Substituenten an C-3) erwarten wir für *s-cis-(E)*-**3d** das Signal von C-3 um ca. 20 ppm¹¹) bei tieferem Feld als bei *s-trans-(E)*-**3d**. Da die Differenz jedoch tatsächlich nur 4 ppm beträgt (Tab. 2), führen wir die Linienverbreiterung auf eine rasch verlaufende (*E*)/(*Z*)-Isomerisierung zurück. Dies steht im Einklang mit früher gemachten Beobachtungen¹¹, daß 3-Phenyl-1-metalla-1,3diene (vermutlich aus sterischen Gründen) deutlich geringere Konfigurationsstabilität zeigen als die entsprechenden 3-Methyl-Derivate.

Pyrrole 6 durch Insertion von Isocyaniden in M = C-Bindungen von 3

Von zahlreichen 1-Ethoxycarben-Komplexen ist bekannt, daß sie rasch Isocyanide R¹ – NC 4 (a: R¹ = CH₃, b: R¹ = c-C₆H₁₁) an der M = C-Bindung addieren und dabei Ketenimin-Komplexe⁵ bilden. Entsprechend liefern 1-Metalla-1,3diene (E)/(Z)-3d mit 4a, b die 2,5-Dihydropyrrolyliden-Komplexe 6a, b [Gl. (3), Tab. 2] über 1-Aza-1,2,4-pentatrien-Zwischenstufen 5 [Gl. (2)]⁹. Letztere sind thermolabil und cyclisieren bei 20°C spontan zu 6.

Bei Einwirkung von überschüssigem 4 auf 3 wird eine Nebenreaktion eingeleitet und gemäß Gl. (4) aus 5 durch Substitution mit 4 der Ketenimin-Ligand 7 freigesetzt^{5,9]}. Auch bei 1:1-Umsetzung von 3 mit 4 kann ein durch unvollständige Durchmischung des Reaktionsansatzes entstehender lokaler Überschuß an Isocyanid diese Nebenreaktion induzieren (auf Kosten der Ausbeuten an Pyrrol 6).

Tab. 1. Substitutionsmuster von 3, Ausbeuten von (E)/(Z)-3 (in %), charakteristische ¹³C-NMR-Signale (δ , C₆D₆/CS₂ 1:3)

	L _n M	R	$(E)/(Z)^{a)}$	$\delta(\mathbf{M}=\mathbf{C})$	δ(C-2)	δ(C-3)	δ(1-OCH ₂)	δ(3-OCH ₂)
(E)-3a	Cr(CO),	CH ₃	96:0	319.9	120.7	162.8	76.1	65.2
(<i>E</i>)-3b	W(CO) ₅	CH	95:0	295.2	123.7	165.8	79.0	65.4
(E)-3c	Cr(CO) ₅	C ₆ H ₅	44:7	324.1	121.0	159.7	75.5	65.8
(E)-3d	W(CO) ₅	C ₆ H ₅	72:8	29 7.5	123.4	162.8	77.9	65.7
(Z)-3d	W(CO) ₅	C ₆ H ₅	_	b)	123.7	158.8	78.7	68.9

^{a)} Jeweils bezogen auf umgesetztes 1. - ^{b)} Nicht ermittelt.

	L_nM	R	\mathbf{R}^1	(%)	$\delta(M=C)$	δ(C-3)	δ(C-4)	δ(C-5)
6a	W(CO) ₅	C ₆ H ₅	CH ₃	70	243.4	162.3	104.5	106.7 ^{a)}
6b	W(CO) ₅	C_6H_5	$c - C_6 H_{11}$	43	244.1	160.8	107.8	107.7 ^{a)}
11	$Cr(CO)_5$	н	$c - C_6 H_{11}$	67	262.5	161.3	98.2	95.0 ^{b)}
spiro-14a	Cr(CO) ₅	c)	CH ₁	62	262.5	160.6	103.1	95.4 ^{b)}
spiro-14b	$Cr(CO)_5$	c)	$c - C_6 H_{11}$	65	d)			

^{a)} In C₆D₆/CS₂ 1:3. - ^{b)} In C₆D₆. - ^{c)} 5-spiro-[CH₂]₂CO-N(CH₃)-. - ^{d)} Nicht ermittelt.

$$(E)/(Z)-5 + 4 \longrightarrow \mathbb{R}^{1}-\mathbb{N}=C \xrightarrow{OEt}_{Z} \mathbb{R}^{R} + L_{n}M(\mathbb{R}^{1}-\mathbb{N}=C) \quad (4)$$

stitution zu Insertion läßt sich anhand der Reaktionstemperatur kontrollieren. So liefert (E)-13 mit 4a bei 20°C durch Insertion und anschließende Cyclisierung bevorzugt die Spiroverbindung 14 (Tab. 2), bei 70°C jedoch überwiegend das Substitutionsprodukt 15.

Ausblick

1-Metalla-1,3-diene sind nach unterschiedlichen Verfahren leicht zugänglich¹⁵⁾ und haben sich als Synthese-Bausteine bewährt¹⁵⁾. In vorliegender Arbeit wurden aus 1-Metalla-1,3-dienen und Isocyaniden Pyrrol-Derivate nach zwei unterschiedlichen Verknüpfungsmustern E und F (Schema 1) aufgebaut. Die Reaktionen ermöglichen den Zugang zu hoch funktionalisierten 2*H*-Pyrrolyliden- sowie entsprechenden Spiro-Derivaten, die leicht und vielfältig modifizierbare²⁾ M=C-Bindungen enthalten. Außer Zwei-Komponenten-Reaktionen mit ungesättigten Substraten, wie Alkinen oder Isocyaniden, zum Aufbau carbocyclischer und heterocyclischer Ringe sollte eine Vielzahl von Drei-Komponenten-Reaktionen möglich sein. Zum gegenwärtigen Zeitpunkt steht deren Erforschung noch aus.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie unterstützt.

Experimenteller Teil

Umsetzung und Aufarbeitung unter Inertgas. – Alle Lösungsmittel waren trocken und frisch destilliert. – ¹H- und ¹³C-NMR: Bruker WM 300 (Zuordnung durch DR-Experimente oder Breit-

2H-Pyrrol-Derivat 11 aus 1a

Ebenso wie 6 wurde auch der 2*H*-Pyrrol-Komplex 11 aus einem C_1 -, einem C_2 - und einem CN-Baustein hergestellt. Jedoch unterscheiden sich die Synthesen prinzipiell, sowohl hinsichtlich der Herkunft der Bausteine als auch der Regiochemie ihrer Verknüpfung (Fomelbilder E und F, Schema 1). Man gewinnt 11 aus dem 1-Metalla-1,3-dien (*E*)-10, das seinerseits z. B. durch Kondensation von 1a mit Dimethylformamid (9) zugänglich ist¹¹⁾. Nach Gl. (5) bleibt bei dieser Synthese der ursprüngliche Carbenkohlenstoff an das Metall gebunden. Letztlich entsteht 11 nach dem Verknüpfungsmuster E (Schema 1) einer [2+1+2]-Cycloaddition.

Spiro-14 aus 3-(Acylamino)alkenyl-Carbenkomplexen (E)-13

Bei (elektronenreichen) 1-Aminocarben-Cr(CO)₅-Komplexen ist die Bereitschaft zur Insertion von Isocyaniden in die Cr=C-Bindung (verglichen mit den entsprechenden 1-Ethoxyderivaten) deutlich herabgesetzt und dadurch die Substitution von Kohlenmonoxid- durch Isocyanidliganden begünstigt¹²⁾. N-Acylierung bewirkt eine erhebliche Reaktivitätssteigerung an der Cr=C-Bindung sowohl bei 1-Amino- als auch bei vinylogen 3-Aminocarben-Komplexen¹³⁾. Wir erhielten den 3-(Acylamino)alkenyl-Carbenkomplex (E)-13 durch Kondensation von 1a mit dem cyclischen Imid 12 [Gl. (7)]^{11,14)}. (E)-13 addiert Isocyanide 4a, b zu spiro-14 [Gl. (8)]. Allerdings müssen die Reaktionsbedingungen genau eingehalten werden, da andernfalls in unerwünschter Nebenreaktion eine *cis*-Substitution von L = CO durch 4 zu 15 eintreten kann. Das Verhältnis von Subband-, DEPT- und "Gated-decoupling"-Messungen). – IR: Digilab FTS 45. – MS: Finnigan MAT 312. – Elementaranalysen: Perkin-Elmer-240-Elemental-Analyser. – Säulenchromatographie: Merck-Kieselgel 100; Dünnschichtchromatographie: Merck DC-Alufolien Kieselgel 60 F 254. – Petroletherfraktion: 40–60°C. R_{Γ} Werte beziehen sich jeweils auf DC-Tests. Ausgangsmaterial 1¹⁶, 2¹⁷.

Pentacarbonyl (2E)-1,3-diethoxybutenyliden/chrom (3a): Zu 264 mg (1.00 mmol) 1a in 4 ml trockenem Ether gibt man bei 0°C in einem luftdicht verschraubbaren 5-ml-Glasgefäß 280 mg (4.00 mmol) 2. Nach 24 h bei 4°C wird eingedampft (20°C, 20 Torr), in Petrolether aufgenommen und der gesamte Ansatz an Kieselgel chromatographiert (Säule 30×2 cm). Man eluiert mit Petrolether eine gelbe Fraktion mit nicht-umgesetztem 1a (140 mg, 53%), dann eine zweite, ebenfalls gelbe Fraktion mit 3a. Diese wird eingedampft (20°C, 20 Torr), in 3 ml Pentan aufgenommen und die Lösung gekühlt. Bei - 78°C erhält man 150 mg (45% absolut bzw. 96% bez. auf umgesetztes 1a) gelbe Kristalle von 3a, Schmp. 38°C, $R_{\rm f} = 0.5$ in Petrolether/Dichlormethan (3:1). - ¹H-NMR (C₆D₆/ CS_2 1:3): $\delta = 6.82$ (s, 1 H, 2-H), 4.78 und 3.73 (je q, je 2 H, je OCH₂), 1.98 (s, 3H, CH₃), 1.33 und 1.13 (je t, je 3H, je CH₃, Et). - ¹³C-NMR (C₆D₆/CS₂ 1:3): δ = 319.9 (Cr = C), 223.7 und 218.0 [1:4, trans- und cis-CO, Cr(CO)₅], 162.8 (C-3), 120.7 (C-2), 76.1 und 65.2 (je OCH₂), 23.3 (C-4), 15.4 und 14.3 (je CH₃, Et). – IR (Pentan), cm^{-1} (%): $\tilde{v} = 2056.1$ (20), 1938.5 (100) [$v(C \equiv O)$]; IR (KBr): 1640 [v(C=C)]. - FD-MS: m/z (%) = 334 [M^{\oplus}].

C13H14CrO7 (334.3) Ber. C 46.72 H 4.22 Gef. C 46.94 H 4.17

Pentacarbonyl/(2E)-1,3-diethoxybutenyliden/wolfram (3b): Zu 264 mg (1.00 mmol) 1 b in 4 ml trockenem Ether gibt man bei 0°C in einem luftdicht verschraubbaren 5-ml-Glasgefäß 280 mg (4.00 mmol) 2. Nach 24 h bei 4°C wird eingedampft (20°C, 20 Torr), in Petrolether aufgenommen und der gesamte Ansatz an Kieselgel chromatographiert (Säule 30×2 cm). Man eluiert mit Petrolether eine gelbe Fraktion mit nicht-umgesetztem 1b (150 mg, 38%), dann eine zweite, gelbe Fraktion mit 3b. Diese wird eingedampft (20°C, 20 Torr), in 3 ml Pentan aufgenommen und liefert beim Kühlen (-78°C) gelbe Kristalle von 3b (275 mg, 59% absolut bzw. 95% bez. auf umgesetztes 1b), Schmp. 43°C, $R_f = 0.5$ in Petrolether/ Dichlormethan (3:1). $- {}^{t}H-NMR (C_{6}D_{6}/CS_{2} 1:3): \delta = 6.81 (s, 1 H, 1)$ 2-H), 4.63 und 3.74 (je q, je 2H, je OCH₂), 2.00 (s, 3H, CH₃), 1.36 und 1.18 (je t, je 3 H, je CH₃, Et). - ¹³C-NMR (C₆D₆/CS₂ 1:3): δ = 295.2 [W=C, ${}^{1}J({}^{183}W-{}^{13}C) = 98.5$ Hz], 203.4 und 198.8 [1:4, trans- und cis-CO, W(CO)₅, ${}^{1}J({}^{183}W - {}^{13}C) = 122.2$ und 122.7 Hz], 165.8 (C-3), 123.7 (C-2), 79.0 und 65.4 (je OCH2), 23.7 (C-4), 15.4 und 14.4 (je CH₃, Et). – IR (Pentan), cm⁻¹ (%): $\tilde{\nu} = 2063.8$ (20), 1936.5 (100) $[v(C \equiv O)]$; IR (KBr): 1641 [v(C = C)]. - MS (70 eV): m/z ¹⁸⁴W (%) = 466 (4), 438 (2), 410 (4), 382 (3), 354 (4), 326 (7), 57 (100).

$C_{13}H_{14}O_7W \ (466.1) \quad \text{Ber. C 33.50 H 3.03 Gef. C 33.56 H 3.03}$

Pentacarbonyl[(2E)/(2Z)-1,3-diethoxy-3-phenylpropenyliden]chrom [(E)- und (Z)-3c]: Zu 326 mg (1.00 mmol) 1c in 4 ml trokkenem Ether gibt man bei 0°C in einem luftdicht verschraubbaren 5-ml-Glasgefäß 280 mg (4.00 mmol) 2. Nach 24 h bei 4°C wird eingedampft (20°C, 20 Torr), in Petrolether aufgenommen und der gesamte Ansatz an Kieselgel chromatographiert (Säule 30 × 2 cm). Man eluiert mit Petrolether eine rote Fraktion mit nicht-umgesetztem 1c (70 mg, 27%), dann eine zweite, ebenfalls rote Fraktion mit 3c. Diese wird eingedampft (20°C, 20 Torr) und in 3 ml Pentan aufgenommen. Daraus erhält man bei -78° C laut ¹H-NMR-Spektrum ein 1:10-Gemisch von (Z)-3c und (E)-3c (140 mg, 35% absolut bzw. 48% bez. auf umgesetztes 1c), rote Kristalle, Schmp. 60°C, $R_{\rm f} = 0.56$ in Petrolether/Dichlormethan (3:1). Das Gemisch wurde nicht getrennt.

[(*E*)-3c]: ¹H-NMR (C₆D₆/CS₂ 1:3): $\delta = 7.16 - 7.04$ (5H, m, C₆H₅), 6.90 (1 H, s, 2-H), 4.39 und 3.71 (je 2H, je q, jc OCH₂), 1.05 und 0.57 (je 3 H, je t, je CH₃, Et). $-^{13}$ C-NMR (C₆D₆/CS₂ 1:3): $\delta = 324.1$ (Cr = C), 223.8 und 217.9 [1:4, *trans*- und *cis*-CO, Cr(CO)₅], 159.7 (C-3), 137.3 (*i*-C, C₆H₅); 129.5, 128.9, 128.0 (1:2:2, C-2 bis -6, C₆H₅), 121.0 (C-2), 75.5 und 65.8 (je OCH₂), 14.4 und 13.9 (je CH₃, Et). - IR (Pentan), [(*E*)- und (*Z*)-3c], cm⁻¹ (%): $\tilde{v} = 2056.1$ (21), 1940.4 (100) [v(C=O)]; IR (KBr): 1608 [v(C=C)]. - MS (70 eV) [(*E*)- und (*Z*)-3c]; *m*/*z* (%) = 396 (12) [M[⊕]], 368 (6), 340 (11), 312 (16), 284 (17), 256 (20), 199 (23), 184 (38), 52 (100).

[(Z)-3c]: ¹H-NMR (C₆D₆/CS₂ 1:3): $\delta = 7.15 - 7.04$ (5H, m, C₆H₅), 6.82 (1H, s, 2-H), 4.65 und 3.58 (je 2H, je q, je OCH₂), 1.30 und 1.05 (3H, je t, je CH₃, Et).

 $C_{18}H_{16}CrO_7\;(396.3)\quad Ber.\ C\ 54.55\ H\ 4.07\quad Gef.\ C\ 55.15\ H\ 4.28$

Pentacarbonyl[(2E)/(2Z)-1,3-diethoxy-3-phenylpropenyliden]wolfram [(E)- und (Z)-3d]: Zu 458 mg (1.00 mmol) 1d in 4 ml trockenem Ether gibt man bei 0°C in einem luftdicht verschraubbaren 5-ml-Glasgefäß 140 mg (2.00 mmol) 2. Nach 24 h bei 4°C wird eingedampft (20°C, 20 Torr), in Petrolether aufgenommen und der gesamte Ansatz an Kieselgel chromatographiert (Säule 30 × 2 cm). Man eluiert mit Petrolether nicht-umgesetztes 1d (140 mg, 31%), dann eine zweite, rote Fraktion. Diese wird eingedampft (20°C, 20 Torr) und in 3 ml Pentan aufgenommen. Daraus erhält man bei -78°C ein 10:1-Gemisch von (E)- und (Z)-3d (290 mg, 55% absolut bzw. 80% bez. auf umgesetztes 1d, rote Kristalle, Schmp. 82°C, $R_f = 0.56$ in Petrolether/Dichlormethan 3:1). Das Gemisch wurde nicht getrennt.

[(*E*)-3d]: ¹H-NMR (C₆D₆/CS₂ 1:3): δ = 7.15 - 7.05 (5H, m, C₆H₅), 6.85 (1 H, s, 2-H), 4.26 und 3.78 (je 2H, je q, je OCH₂), 1.14 und 0.63 (je 3 H, je t, je CH₃, Et). - ¹³C-NMR (C₆D₆/CS₂ 1:3): δ = 297.5 (W = C), 203.3 und 198.3 [1:4, *trans-* und *cis-*CO, W(CO)₅, ¹J(¹⁸³W - ¹³C) = 120.6 und 127.5 Hz], 162.8 (C-3), 137.0 (*i*-C, C₆H₅); 129.4, 128.7, 127.7 (1:2:2, C-2 bis -6 C₆H₅), 123.8 (C-2), 77.9 und 65.7 (je OCH₂), 14.2 und 13.6 (je CH₃, Et). - IR (Pentan), [(*E*)- und (*Z*)-**3d**], cm⁻¹ (%); \tilde{v} = 2063.8 (24), 1938.5 (100) [v(C=O)]; IR (KBr): 1607 [v(C=C)]. - MS (70 eV), [(*E*)- und (*Z*)-**3d**], *m/z* ¹⁸⁴W (%) = 528 (21) [M[®]], 500 (9), 472 (20), 444 (31), 416 (24), 388 (28), 69 (100).

[(Z)-3d]: ¹H-NMR (C₆D₆/CS₂ 1:3): $\delta = 7.15 - 7.05$ (5H, m, C₆H₅), 6.88 (1 H, s, 2-H), 4.67 und 3.67 (je 2 H, je q, je OCH₂), 1.37 und 1.14 (3 H, je t, je CH₃, Et). - ¹³C-NMR (C₆D₆/CS₂ 1:3): $\delta =$ [W=C und W(CO)₅, Signale nicht lokalisiert], 158.8 (C-3), 134.8 (*i*-C, C₆H₅); 130.6, 128.6, 128.4, (1:2:2, C-2 bis 6 C₆H₅), 123.7 (C-2), 78.7 und 68.9 (je OCH₂), 15.3 und 14.9 (je CH₃, Et).

C₁₈H₁₆O₇W (528.2) Ber. C 40.93 H 3.05 Gef. C 41.13 H 3.09

Pentacarbonyl (3,5-diethoxy-1,5-dihydro-1-methyl-5-phenyl-2Hpyrrol-2-yliden) wolfram (6a): Zu 264 mg (0.50 mmol) (E)/(Z)-3d in Petrolether gibt man in einem luftdicht verschraubbaren 5-ml-Glasgefäß langsam 25 mg (0.60 mmol) 4a. Der Reaktionsansatz färbt sich langsam dunkel und wird nach 24 h an Kieselgel chromatographiert (Säule 15 × 2 cm). Mit Petrolether/Aceton (20:1) eluiert man eine gelbe Fraktion mit 6a, die eingedampft (20°C, 20 Torr) und in Pentan aufgenommen wird. Bei -78°C erhält man daraus gelbe Kristalle von 6a (200 mg, 70%), Schmp. 108°C Zers., $R_f =$ 0.5 in Petrolether/Dichlormethan (3:1). - ¹H-NMR (C₆D₆/CS₂ 1:3): $\delta = 7.25$ (5H, m, C₆H₅), 4.91 (1H, s, 4-H), 3.66 (2H, m, diastereotope 3-OCH₂), 3.34 und 2.97 (je 1H, je dq, ²J = 9 Hz, ³J = 7, diastereotope 5-OCH₂), 3.08 (3H, s, NCH₃), 1.33 und 1.19 (je 3 H, je t, je CH₃, Et). - ¹³C-NMR (C₆D₆/CS₂ 1:3): δ = 243.4 (W = C), 203.2 und 198.3 [1:4, *trans*- und *cis*-CO, W(CO)₅], 162.3 (C-3), 135.3 (*i*-C, C₆H₅); 129.2, 129.1, 125.6 (2:1:2, C-2 bis -6 C₆H₅), 106.7 (C-5), 104.5 (C-4), 66.7 und 59.7 (je OCH₂), 36.9 (NCH₃), 15.4 und 14.3 (je CH₃, Et). - IR (Pentan), cm⁻¹ (%): \tilde{v} = 2063.8 (16), 1942.3 (70), 1932.7 (100) [v(C \equiv O)]; IR (KBr): 1621 [v(C = C)]. - MS (70 eV): m/z ¹⁸⁴W (%) = 569 (30) [M[⊕]], 541 (28), 513 (34), 485 (12), 457 (10), 429 (12), 244 (28), 57 (100).

 $\begin{array}{c} C_{20}H_{19}NO_7W~(569.2) \\ \text{Gef. C } 42.20 \ H \ 3.36 \ N \ 2.46 \\ \text{Gef. C } 41.90 \ H \ 3.48 \ N \ 2.49 \end{array}$

Pentacarbonyl (1-cyclohexyl-3,5-diethoxy-1,5-dihydro-5-phenyl-2H-pyrrol-2-yliden)wolfram (**6b**) und Pentacarbonyl (cyclohexylisocyanid) wolfram (**8**, $\mathbb{R}^1 = c-\mathbb{C}_6H_{11}$): Zu 264 mg (0.50 mmol) (E)/(Z)-3d in 2 ml Petrolether gibt man in einem luftdicht verschraubbaren 5-ml-Glasgefäß bei 0°C langsam 65 mg (0.60 mmol) 4b. Der Ansatz färbt sich bei 20°C langsam dunkel und wird nach 24 h an Kieselgel chromatographiert (Säule 15 × 2 cm). Mit Petrolether/Aceton (96:4) eluicrt man eine gelbe Fraktion, die eingedampft (20°C, 20 Torr) und in Pentan aufgenommen wird. Daraus erhält man 200 mg eines 3:2-Gemisches (laut ¹H-NMR-Spektrum) aus **6b** (43%, $R_f =$ 0.6 in Petrolether/Dichlormethan 3:1) und **8b** (30%, $R_f =$ 0.8 in Petrolether/Dichlormethan 3:1).

6b: ¹H-NMR (C₆D₆/CS₂ 1:3): $\delta = 7.2-7.05$ (5H, m, C₆H₅), 4.86 (1H, m, *c*-C₆H₁₁), 4.82 (1H, s, 4-H), 3.61 (2H, q, 3-OCH₂), 3.42 und 3.17 (je 1H, je dq, ²J = 9 Hz, ³J = 7, diastereotope 5-OCH₂), 2.1-0.7 (10H, m, 5 CH₂, Cyclohexyl), 1.33 und 1.21 (je 3H, je t, je CH₃, Et). - ¹³C-NMR (C₆D₆/CS₂ 1:3): $\delta = 244.1$ [W = C, ¹J(¹⁸³W - ¹³C) = 92.9 Hz], 203.8 und 198.5 [1:4, *trans*- und *cis*-CO, W(CO)₅, ¹J(¹⁸³W - ¹³C) = 125.1 und 127.1 Hz], 160.8 (C-3), 136.6 (*i*-C, C₆H₅); 128.8, 128.6, 126.1 (2:1:2, C-2 bis -6, C₆H₅), 107.8 (C-4), 107.7 (C-5); 69.9, 66.8, 60.8 (*c*-C₆H₁₁, 2 OCH₂); 32.7, 26.6, 23.1 (2:2:1, C₆H₁₁), 15.2 und 14.2 (je CH₃, Et). - MS (70 eV): *m/z* ¹⁸⁴W (%) = 637 (14) [M[⊕]], 609 (14), 581 (10), 553 (24), 525 (38), 69 (100).

8b: ¹H-NMR ($C_6D_6/CS_2 1:3$): $\delta = 3.35 (1 \text{ H}, \text{ m}, c-C_6H_{11}), 2.1-0.7$ (10 H, m, 5 CH₂, Cyclohexyl). $-^{13}$ C-NMR ($C_6D_6/CS_2 1:3$): $\delta =$ 196.5 und 194.7 [1:4, *trans-* und *cis-*CO, W (CO)₅, ¹J(¹⁸³W - ¹³C) = 127.7 Hz], 143.6 [breit, W ($C = NC_6H_{11}$)], 54.6 ($c-C_6H_{11}$); 32.1, 25.2, 23.1 (2:2:1, C_6H_{11}). - IR (Pentan), **6d'/8b**, cm⁻¹ (%): $\tilde{v} = 2063.6$ (19), 1973.2 (8), 1953.9 (8), 1938.5 (77), 1928.5 (100) [v(C \equiv O)]; IR (KBr): 1628 [v(C=C)]. - MS (70 eV): m/z ¹⁸⁴W (%) = 433 (11) [M[®]], 377 (12), 349 (10), 321 (12), 293 (12), 55 (100).

Pentacarbonyl(1-cyclohexyl-3,5-diethoxy-1,5-dihydro-2H-pyrrol-2-yliden)chrom (11): Zu 107 mg (0.33 mmol) (E)-10¹¹ in 0.5 ml C₆D₆ gibt man in einem "Aromaröhrchen" bei 0°C langsam 36 mg (0.33 mmol) 4b. Der Reaktionsansatz färbt sich bei 20°C langsam dunkel. Nach 24 h wird zentrifugiert. Das ¹H-NMR-Spektrum der Lösung zeigt ein ca. 1:20-Gemisch aus (E)-10 und 11. Bei der Chromatographie an Kieselgel (Säule 15×2 cm) isoliert man mit Petrolether/ Dichlormethan (3:1) eine gelbe Fraktion mit 11. Diese wird eingedampft (20°C, 200 Torr) und in Pentan aufgenommen. Bei -78°C gelbe Kristalle von 11 (95 mg, 67%, Schmp. 82°C, $R_f =$ 0.5 in Petrolether/Dichlormethan 3:1). - ¹H-NMR (C₆D₆/CS₂ 1:3): $\delta = 5.36 (1 \text{ H}, \text{ d}, {}^{3}J = 1.7 \text{ Hz}, 4\text{-H}), 4.79 (1 \text{ H}, \text{ m}, \text{ c-C}_{6}\text{H}_{11}), 4.70$ $(1 \text{ H}, \text{ d}, {}^{3}J = 1.7 \text{ Hz}, 5 \text{-H}), 3.60 (2 \text{ H}, \text{ q}, 3 \text{-OCH}_{2}), 3.15 \text{ und } 2.93 (je$ 1 H, je dq, ${}^{2}J = 9$ Hz, ${}^{1}J = 7$, diastereotope 5-OCH₂), 2.0-0.85 (10H, m, 5 CH₂, Cyclohexyl), 1.34 und 1.02 (je 3H, je t, CH₃, Et). -¹³C-NMR (C₆D₆): $\delta = 262.5$ (Cr = C), 224.8 und 218.6 [1:4, transund cis-CO, Cr(CO)₅], 161.3 (C-3); 98.2, 95.0 (C-4,5); 66.3 (OCH₂), 65.6 (c-C₆H₁₁), 59.2 (OCH₂); 33.4, 31.8, 26.0, 24.7 (c-C₆H₁₁), 14.5 und 13.9 (je CH₃, Et). – IR (Pentan), cm⁻¹ (%): $\tilde{v} = 2056.1$ (20), 1977.0 (10), 1940.4 (80), 1930.7 (100) [v(C=O)]; IR (KBr): 1620.2 [v(C=C)].

 $\begin{array}{c} C_{19}H_{23}CrNO_7\ (429.4) & \mbox{Ber. C}\ 53.15\ H\ 5.40\ N\ 3.26\\ & \mbox{Gef. C}\ 53.04\ H\ 5.32\ N\ 3.27 \end{array}$

Pentacarbonyl(3-ethoxy-1,6-dimethyl-7-oxo-1,6-diazaspiro[4.4]non-3-en-2-yliden] chrom (spiro-14a) und cis-Tetracarbonyl (2E)-1ethoxy-2-(1-methyl-5-oxo-2-pyrrolidinyliden)ethyliden](methylisocyanid)chrom (15a): Zu 120 mg (0.33 mmol) (E)-13 in 2 ml C₆D₆ gibt man in einem luftdicht verschraubbaren 5-ml-Glasgefäß langsam 14 mg (0.33 mmol) 4a. Man fügt 3 mg Hexamethylbenzol als internen Standard zu. Nach 4 d bei 20°C wird zentrifugiert und die Lösung anhand von ¹H-NMR-Spektren untersucht. Man beobachtet ein Gemisch (E)-13:4a: spiro-14a: 15a im Verhältnis 19:19:46:6 bezogen auf Hexamethylbenzol. Bei der Chromatographie an Kieselgel (Säule 10×2 cm) werden (E)-13 und 15a mit Dichlormethan eluiert, spiro-14a ($R_f = 0.3$ in Dichlormethan/Ether 1:1) zersetzt sich an Kieselgel relativ rasch (isolierte Ausb. 30 mg, 23%, gelbe Kristalle, Schmp. 137°C, Zers.). Unter energischeren Reaktionsbedingungen (70°C, 5 h) erhält man nur 15a (70 mg, 57%, Schmp. 110°C).

spiro-14a: ¹H-NMR (C₆D₆): δ = 4.13 (1H, s, 4-H), 3.43 (2H, q, OCH₂), 2.95 und 2.04 (je 3H, je s, je NCH₃), 2.1–1.4 (4H, m, diastereotope 8-H₂ und 9-H₂), 1.25 (3H, t, CH₃, Et). – ¹³C-NMR (C₆D₆): δ = 262.5 (Cr=C), 224.3 und 218.5 [1:4, *trans-* und *cis*-CO, Cr(CO)₅], 176.6 (C=O), 160.6 (C-3), 103.1 (C-4), 95.4 (C-5), 66.7 (OCH₂), 34.5 und 23.9 (je NCH₃), 28.7 und 25.5 (C-8 und C-9), 13.9 (CH₃, Et). – IR (Dichlormethan), cm⁻¹ (%) \tilde{v} = 2058.0 (20), 1932.7 (100) [v(C=O)]; 1701.2 (18) [v(C=O)]; IR (KBr): 1703.1, 1697.4 [vC=O)], 1620.2 [v(C=C)]. – MS (70 eV): *m/z* (%) = 400 (16) [M[⊕]], 372 (12), 344 (12), 316 (14), 288 (16), 260 (25), 224 (24), 57 (100).

 $\begin{array}{rl} C_{16}H_{16}CrN_2O_7 \ (400.3) & \mbox{Ber. C} \ 48.01 \ H \ 4.03 \ N \ 7.00 \\ Gef. \ C \ 48.20 \ H \ 4.25 \ N \ 7.00 \end{array}$

15a: ¹H-NMR (CD₃COCD₃): $\delta = 7.09$ (1 H, s, 2-H), 5.08 (2 H, q, OCH₂), 3.51 und 3.05 (je 3 H, je s, je NCH₃), 3.16 und 2.54 (je 2 H, je "t" breit, je CH₂ Ring), 1.62 (3 H, t, CH₃, Et). - ¹³C-NMR (CD₃COCD₃): $\delta = 324.4$ (Cr=C): 230.0, 224.6, 221.4 [1:1:2, Cr(CO)₄], 178.2 (C=O), 166.7 [breit, Cr(C=NMe)], 150.2 (C-3), 119.7 (C-2), 75.7 (OCH₂), 30 (breit, NCH₃), 28.2 und 28.0 (je CH₂ Ring), 27.2 (NCH₃), 15.9 (CH₃, Et). - IR (Dichlormethan), cm⁻¹ (%): $\tilde{v} = 2160.3$ (30) (C=N), 2004.0 (73), 1899.9 (100) [$v(\equiv O)$], 1735.9 (25) [v(C=O)]; IR (KBr): 2173.8 [$v(C\equiv N)$], 1741.7 [v(C=O)], 1622.1 [v(C=C)]. - MS (70 eV): m/2(%) = 372 (0.6) [M[⊕]], 344 (1), 316 (0.1), 288 (1.2), 260 (6), 219 (9), 167 (8), 52 (100). C₁₅H₁₆CrN₂O₆ (372.3) Ber. C 48.39 H 4.33 N 7.52 Gef. C 47.98 H 4.25 N 7.36

Pentacarbonyl{(1-cyclohexyl-3-ethoxy-6-methyl-7-oxo)-1,6-diazaspiro[4.4]non-3-en-2-yliden]chrom (spiro-14b): Zu 120 mg (0.33 mmol) (E)-13 in 4 ml Pentan gibt man in einem luftdicht verschraubbaren 5-ml-Glasgefäß langsam 36 mg (0.33 mmol) 4b. Der Reaktionsansatz färbt sich langsam dunkel. Man zentrifugiert nach 24 h und gewinnt aus der klaren Lösung bei -78°C gelbe Kristalle von spiro-14b (100 mg, 65%), Schmp. 162°C (Zers), $R_f = 0.4$ in Dichlormethan/Ether (1:1). - ¹H-NMR (CDCl₃): $\delta = 5.32$ (1H, m, c-C₆H₁₁), 4.97 (1H, s, 4-H), 3.96 (2H, q, OCH₂), 2.52 - 2.45 (4H, m, breit, 9- und 8-CH₂), 2.50 (3H, s, NCH₃), 2.2 - 1.2 (10H, breit, 5 CH₂, C₆H₁₁), 1.52 (3H, t, CH₃, Et). - IR (Dichlormethan), cm⁻¹ (%): $\tilde{v} = 2056.1$ (26), 1979.0 (8), 1930.7 (100), [v(C≡O)]; 1703.1 (14) [v(C=O]; IR (KBr): 1708.9 [v(C=O)], 1637.6 [v(C=C)]. -MS (70 eV): m/z (%) = 468 (1) [M[⊕]], 440 (1), 412 (1), 384 (2), 356 (10), 328 (39), 193 (28), 165 (55), 55 (100).

1a: 25879-46-3 / 1b: 38669-69-1 / 1c: 26160-57-6 / 1d: 36834-98-7 / 2: 927-80-0 / 3a: 128899-57-0 / 3b: 128899-58-1 / (*E*)-3c: 128822-63-9 / (Z)-3c: 128899-59-2 / (E)-3d: 128822-64-0 / (Z)-3d: 128899-60-5 / 4a: 593-75-9 / 4b: 931-53-3 / 6a: 128822-65-1 / 6b: 128822-66-2 / 8b: 15603-77-7 / (E)-10: 123624-13-5 / 11: 128822-67-3 / (E)-13: 126123-73-7 / spiro-14a: 128822-68-4 / spiro-14b: 128822-69-5 / 15a: 128842-64-8

- ²⁾ Übersicht: K.-H. Dötz, H. Fischer, P. Hofmann, F. R. Kreissl, U. Schubert, K. Weiss in Transition Metal Carbene Complexes, Verlag Chemie, Weinheim 1983.
- ³⁾ Neuere Übersichtsartikel: K.-H. Dötz, Angew. Chem. 96 (1984)
 ⁵⁷³; Angew. Chem. Int. Ed. Engl. 23 (1984) 587; K.-H. Dötz, M. Popall und G. Müller, J. Organomet. Chem. 334 (1987) 57; K. S.
- ^{A)} ^{Aa)} M. A. McGuire, L. S. Hegedus, J. Am. Chan, G. A. Peterson, T. A. Brandsvold, K. L. Faron, C. A. Challener, C. Hyldahl, W. D. Wulff, *ibid.* **334** (1987) 9.
 ^{A)} ^{Aa)} M. A. McGuire, L. S. Hegedus, J. Am. Chem. Soc. **104** (1982) 5538. ^{Ab)} M. Audouin, S. Blandinières, A. Parlier, H. Rudler, J. Chem. Soc., Chem. Commun. **1990**, 23. ^{Ac)} K.-H. Dötz, Chem. Res. **113** (1980) 2507; K. H. Dötz, R. Efford, K. Churge, Chem. Soc. Ber. 113 (1980) 3597; K.-H. Dötz, B. Fügen-Köster, D. Neugebauer, J. Organomet. Chem. **182** (1979) 489. $-^{4d}$ M. F. Semmelhack, Jaiwook Park, Organometallics 5 (1986) 2550. $-^{4e}$ B. Denise, A. Parlier, H. Rudler, J. Vaissermann, J. C. Daran, J. Chem. Soc., Chem. Commun. 1988, 1303. – ⁴¹⁾ K.-H. Dötz, H.-G. Erben, K. Harms, J. Chem. Soc., Chem. Commun. 1989, 692; K.-H. Dötz, D. Grotjahn, K. Harms, Angew. Chem. 101 (1989) 1425; Angew. Chem. Int. Ed. Engl. 28 (1989) 1384. – ^{4g.} W. D.

Wulff, V. Dragisich, J. C. Huffman, R. W. Kaesler, D. C. Yang, Organometallics 8 (1989) 2196. – ^{4h)} L. S. Hegedus, L. M. Schultze, J. Montgomery, Organometallics 8 (1989) 2189; L. S. Hegedus, D. B. Miller, Jr., J. Org. Chem. 54 (1989) 1241. – ⁴¹ Review: N. E. Schore, Chem. Rev. 88 (1988) 1081. – ^{4k} R. Aumann, H. Heinen, E. Kuckert, Angew. Chem. 97 (1985) 960; Angew. Chem. Int. Ed. Engl. 24 (1985) 978.
 ⁵⁾ Neuerer Übersichtsartikel: R. Aumann, Angew. Chem. 100 (1988)

- 1512; Angew. Chem. Int. Ed. Engl. 27 (1988) 1456.
- ⁶⁾ R. Aumann, E. Kuckert, Chem. Ber. 120 (1987) 1939.
- ⁷⁾ R. Aumann, H. Heinen, C. Krüger, unveröffentlicht.
 ⁸⁾ R. Aumann, E. Kuckert, C. Krüger, R. Goddard, K. Angermund, *Chem. Ber.* 121 (1988) 1475.
- 9) R. Aumann, H. Heinen, Chem. Ber. 119 (1986) 3801.
- ¹⁰ Vgl. K.-H. Dötz, Angew. Chem. 96 (1984) 573, und zwar 576; Angew. Chem. Int. Ed. Engl. 23 (1984) 586; C. P. Casey, S. W. Polichnowski, A. J. Shusterman, C. R. Jones, J. Am. Chem. Soc.
- 101 (1979) 7282.
 ¹¹¹ ^{11a} R. Aumann, P. Hinterding, Chem. Ber. 123 (1990) 611. –
 ^{11b} R. Aumann, P. Hinterding, Chem. Ber. 122 (1989) 365.
 ¹² R. Aumann, H. Heinen, Chem. Ber. 122 (1989) 1139.
 ¹³ ^{11a} R. Aumann, H. Heinen, C. Krüner, P. Betz, Chem. Ber. 123

- Chem. Ber. 123 (1990) 359.
 ¹⁴⁾ R. Aumann, P. Hinterding, Chem. Ber. 123 (1990) 1847.
 ¹⁵⁾ Darstellungsverfahren und einige bisher bekannte Reaktionsmuster von 1-Metalla-1,3-dienen sind in Lit.^{11a, 14)} zusammengefaßt. ¹⁶ R. Aumann, E. O. Fischer, *Chem. Ber.* **101** (1968) 954.
- ¹⁷⁾ G. Elington, E. R. Jones, B. L. Shaw, M. C. Whiting J. Chem. Soc. 1954, 1860.

[188/90]

¹⁾ 49. Mitteilung: R. Aumann, H. Heinen, J. Organomet. Chem. 391 (1990) C7.